一、从 function calling 开始
要想理解 MCP,需要先理解 function calling 的概念
1.1 function calling 要解决什么问题?
大模型目前存在比较明显的两个问题
- 数据非最新,大模型训练成本很大,所以训练好了的数据无法做到与时俱进。
- 数据孤岛 - 数据领域受限,大模型训练的数据大多是公开的信息,私有领域的数据无法获取,所以很需要用大模型专门针对特定领域内的知识库进行训练。无法做到数据共享
- 无法调用外部能力,大模型只能对文本输出进行概率的计算,但没有真正的逻辑能力,也无法调用外部服务进行更多的任务执行。
1.2 function calling 是什么?
function calling 的出现就是为了解决数据孤岛和调用外部能力的问题,通过 AI client 主导告诉大模型可以调用哪些 tools,进而增强的大模型使用工具的能力。
1.3 function calling 如何运作?

通过上图,在调用大模型之前,AI client 会告诉大模型可以调用哪些 tools,大模型在处理第一轮提问时,会判断是否需要调用哪些 function call, client 会在调用 tools 后,再进行第二轮提问。最终大模型会返回调用的 tools 的响应。
代码示例( [openai 官网示例](https://platform.openai.com/docs/guides/function-calling?api-mode=responses&lang=javascript):
import { OpenAI } from "openai";
const openai = new OpenAI();
// client 在调用大模型之前,需要告诉 tools 有哪些,tools 可以干什么, 以及什么时候可以调用 tools
const tools = [{
type: "function",
name: "get_weather",
description: "Get current temperature for provided coordinates in celsius.",
parameters: {
type: "object",
properties: {
latitude: { type: "number" },
longitude: { type: "number" }
},
required: ["latitude", "longitude"],
additionalProperties: false
},
strict: true
}];
const input = [
{
role: "user",
content: "What's the weather like in Paris today?"
}
];
// 第一轮对话,client 需要主动告诉大模型有哪些tools,以及可以在什么情况下调用哪些 tools
// 大模型会自主决定是否需要调用 tools
const response = await openai.responses.create({
model: "gpt-4o",
input,
tools,
});
/**
*
* [{
* "type": "function_call",
* "id": "fc_12345xyz",
* "call_id": "call_12345xyz",
* "name": "get_weather",
* "arguments": "{\"latitude\":48.8566,\"longitude\":2.3522}"
* }]
*/
// 大模型会自主决定是否需要调用 tools,以及调用哪些 tools
// 如果需要调用 tools 会返回 type = "function_call" 的响应
for (const toolCall of response.output) {
if (toolCall.type !== "function_call") {
continue;
}
const name = toolCall.name;
const args = JSON.parse(toolCall.arguments);
const result = callFunction(name, args);
input.push({
type: "function_call_output",
call_id: toolCall.call_id,
output: result.toString()
});
}
// client 在第二轮对话时,需要告诉大模型调用了什么 tools(通过 call_id) 识别
input.push(toolCall);
input.push({
type: "function_call_output",
call_id: toolCall.call_id,
output: result.toString()
});
// 大模型在第二轮对话会返回基于 function_call 给予的信息推理出来的响应
const response2 = await openai.responses.create({
model: "gpt-4o",
input,
tools,
store: true,
});
console.log(response2.output_text)
const callFunction = async (name, args) => {
if (name === "get_weather") {
return getWeather(args.latitude, args.longitude);
}
if (name === "send_email") {
return sendEmail(args.to, args.body);
}
};
// tooling 提供了调用外部 API 查询信息的能力
async function getWeather(latitude, longitude) {
const response = await fetch(`https://api.open-meteo.com/v1/forecast?latitude=${latitude}&longitude=${longitude}¤t=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m`);
const data = await response.json();
return data.current.temperature_2m;
}
1.4 function calling 的优势特点
- 结构化参数,大模型会严格按照数据格式协议调用 tools
- 意图识别:大模型会自主识别是否需要调用 tools
1.5 function calling 的问题
- tools 必须和 client 调用关联耦合在一起
- 可拓展性差,只能在 web 版的 chatGPT 上使用,需要审核而且有使用限制
- 只支持 HTTP 协议
二、chatGPT Actions
https://platform.openai.com/docs/actions/getting-started
基于 function call, chatGPT 支持在高级版中声明 function calling 协议,从而扩展了 chatGPT 调用第三方接口的能力。


参考官网的示例,需要在 chatGPT 中配置第三方接口调用的 yaml 格式 schema
openapi: 3.1.0
info:
title: NWS Weather API
description: Access to weather data including forecasts, alerts, and observations.
version: 1.0.0
servers:
- url: https://api.weather.gov
description: Main API Server
paths:
/points/{latitude},{longitude}:
get:
operationId: getPointData
summary: Get forecast grid endpoints for a specific location
parameters:
- name: latitude
in: path
required: true
schema:
type: number
format: float
description: Latitude of the point
- name: longitude
in: path
required: true
schema:
type: number
format: float
description: Longitude of the point
responses:
'200':
description: Successfully retrieved grid endpoints
content:
application/json:
schema:
type: object
properties:
properties:
type: object
properties:
forecast:
type: string
format: uri
forecastHourly:
type: string
format: uri
forecastGridData:
type: string
format: uri
/gridpoints/{office}/{gridX},{gridY}/forecast:
get:
operationId: getGridpointForecast
summary: Get forecast for a given grid point
parameters:
- name: office
in: path
required: true
schema:
type: string
description: Weather Forecast Office ID
- name: gridX
in: path
required: true
schema:
type: integer
description: X coordinate of the grid
- name: gridY
in: path
required: true
schema:
type: integer
description: Y coordinate of the grid
responses:
'200':
description: Successfully retrieved gridpoint forecast
content:
application/json:
schema:
type: object
properties:
properties:
type: object
properties:
periods:
type: array
items:
type: object
properties:
number:
type: integer
name:
type: string
startTime:
type: string
format: date-time
endTime:
type: string
format: date-time
temperature:
type: integer
temperatureUnit:
type: string
windSpeed:
type: string
windDirection:
type: string
icon:
type: string
format: uri
shortForecast:
type: string
detailedForecast:
type: string
三、什么是 MCP?
和 function calling 一样的目的,为了让大模型更好和第三方 API, 私有数据库交互,claudAI 开源了 MCP(Model Context Protocol),


如何实现一个 mcp server
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import { z } from "zod";
const NWS_API_BASE = "https://api.weather.gov";
const USER_AGENT = "weather-app/1.0";
// Create server instance
const server = new McpServer({
name: "weather",
version: "1.0.0",
capabilities: {
resources: {},
tools: {},
},
});
// Helper function for making NWS API requests
async function makeNWSRequest<T>(url: string): Promise<T | null> {
const headers = {
"User-Agent": USER_AGENT,
Accept: "application/geo+json",
};
try {
const response = await fetch(url, { headers });
if (!response.ok) {
throw new Error(`HTTP error! status: ${response.status}`);
}
return (await response.json()) as T;
} catch (error) {
console.error("Error making NWS request:", error);
return null;
}
}
interface AlertFeature {
properties: {
event?: string;
areaDesc?: string;
severity?: string;
status?: string;
headline?: string;
};
}
// Format alert data
function formatAlert(feature: AlertFeature): string {
const props = feature.properties;
return [
`Event: ${props.event || "Unknown"}`,
`Area: ${props.areaDesc || "Unknown"}`,
`Severity: ${props.severity || "Unknown"}`,
`Status: ${props.status || "Unknown"}`,
`Headline: ${props.headline || "No headline"}`,
"---",
].join("\n");
}
interface ForecastPeriod {
name?: string;
temperature?: number;
temperatureUnit?: string;
windSpeed?: string;
windDirection?: string;
shortForecast?: string;
}
interface AlertsResponse {
features: AlertFeature[];
}
interface PointsResponse {
properties: {
forecast?: string;
};
}
interface ForecastResponse {
properties: {
periods: ForecastPeriod[];
};
}
// server 注册有哪些 tool
server.tool(
"get-alerts",
"Get weather alerts for a state",
{
state: z.string().length(2).describe("Two-letter state code (e.g. CA, NY)"),
},
async ({ state }) => {
const stateCode = state.toUpperCase();
const alertsUrl = `${NWS_API_BASE}/alerts?area=${stateCode}`;
const alertsData = await makeNWSRequest<AlertsResponse>(alertsUrl);
if (!alertsData) {
return {
content: [
{
type: "text",
text: "Failed to retrieve alerts data",
},
],
};
}
const features = alertsData.features || [];
if (features.length === 0) {
return {
content: [
{
type: "text",
text: `No active alerts for ${stateCode}`,
},
],
};
}
const formattedAlerts = features.map(formatAlert);
const alertsText = `Active alerts for ${stateCode}:\n\n${formattedAlerts.join("\n")}`;
return {
content: [
{
type: "text",
text: alertsText,
},
],
};
},
);
server.tool(
"get-forecast",
"Get weather forecast for a location",
{
latitude: z.number().min(-90).max(90).describe("Latitude of the location"),
longitude: z.number().min(-180).max(180).describe("Longitude of the location"),
},
async ({ latitude, longitude }) => {
// Get grid point data
const pointsUrl = `${NWS_API_BASE}/points/${latitude.toFixed(4)},${longitude.toFixed(4)}`;
const pointsData = await makeNWSRequest<PointsResponse>(pointsUrl);
if (!pointsData) {
return {
content: [
{
type: "text",
text: `Failed to retrieve grid point data for coordinates: ${latitude}, ${longitude}. This location may not be supported by the NWS API (only US locations are supported).`,
},
],
};
}
const forecastUrl = pointsData.properties?.forecast;
if (!forecastUrl) {
return {
content: [
{
type: "text",
text: "Failed to get forecast URL from grid point data",
},
],
};
}
// Get forecast data
const forecastData = await makeNWSRequest<ForecastResponse>(forecastUrl);
if (!forecastData) {
return {
content: [
{
type: "text",
text: "Failed to retrieve forecast data",
},
],
};
}
const periods = forecastData.properties?.periods || [];
if (periods.length === 0) {
return {
content: [
{
type: "text",
text: "No forecast periods available",
},
],
};
}
// Format forecast periods
const formattedForecast = periods.map((period: ForecastPeriod) =>
[
`${period.name || "Unknown"}:`,
`Temperature: ${period.temperature || "Unknown"}°${period.temperatureUnit || "F"}`,
`Wind: ${period.windSpeed || "Unknown"} ${period.windDirection || ""}`,
`${period.shortForecast || "No forecast available"}`,
"---",
].join("\n"),
);
const forecastText = `Forecast for ${latitude}, ${longitude}:\n\n${formattedForecast.join("\n")}`;
return {
content: [
{
type: "text",
text: forecastText,
},
],
};
},
);
MCP 的优势
- 开放,协议开源,任何 AI client 都可以接入 MCP client 和 server
MCP 相关资源
- MCP Server 开放服务列表:
- MCP 官方开源: https://github.com/modelcontextprotocol/servers
- Smithery:https://smithery.ai/(超多 MCP Server 开源服务)
- Pulsemcp:https://www.pulsemcp.com/
- MCP:https://mcp.so/
- Glama:https://glama.ai/mcp/servers
- Cursor:https://cursor.directory/
- Portkey:https://portkey.ai/mcp-servers
- Cline-mcp-marketplace:https://github.com/cline/mcp-marketplace
- Awesome MCP Server:https://mcpservers.org/
2. 【Introducing the Model Context Protocol】https://www.anthropic.com/news/model-context-protocol
3. 【Model Context Protocol Guides】https://docs.anthropic.com/en/docs/agents-and-tools/mcp
4. 【Model Context Protocol GetStart】https://modelcontextprotocol.io/introduction
5. 【MCP Quickstart Resource】https://github.com/modelcontextprotocol/quickstart-resources#
5. 【MCP Typescript SDK】https://github.com/modelcontextprotocol/typescript-sdk/tree/main
6. 【OpenAI Function Call】https://platform.openai.com/docs/guides/function-calling?api-mode=responses